

Please note that the concrete examples given below are not an exhaustive list. Other equipment may be used and should be used in order for children to deepen their understanding.

Progression in the use of concrete apparatus						
Foundation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Real-life objects						
0-9 digit cards						
Number track to 10	Number line to 20	Number line to 100	Number line to 100	Number line including negative numbers	Number line including negative numbers	Number line including negative numbers
Numbered counting	Counting stick					
Tens frame	Tens frame	Tens frame				
Place value charts Tens and ones	Place value charts Tens and ones	Place value charts - Hundreds, tens and ones	Place value charts - Thousands, hundreds, tens and ones	Place value charts - Ten thousands, thousands, hundreds, tens, ones and tenths	Place value charts to a million and three decimal places	Place value charts to 10 million and three decimal places
Interlocking cubes - Use one colour to represent one amount	Interlocking cubes - Use one colour to represent one amount	Dienes	Dienes	Dienes	Dienes	Dienes
			Place value counters	Place value counters	Place value counters	Place value counters
	Place value arrow cards - tens and ones	Place value arrow cards - tens and ones	Place value arrow cards - H, T, O	Place value arrow cards - Th, H, T, O	Place value arrow cards	Place value arrow cards

Foundation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Part-part-whole mat	Part-part-whole mat	Part-part-whole mat	Part-part-whole model	Part-part-whole model	Part-part-whole model	Part-part-whole model
Bar model with real- life objects	Bar model with real life objects/pictorial objects/representative objects eg. counters	Bar model with counters/Dienes progressing to numbers	Bar model with numbers			

Please also refer to our Progression in Bar Modelling guidance for further detail and examples.
$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { Bead strings - ten } & \text { Bead strings - twenty } & \text { Bead strings - hundred } \\ \hline \text { Numicon shapes } & \text { Numicon shapes } \\ \hline \text { Double sided counters } & \text { Double sided counters } \\ \hline \text { Multilink - use one } & \text { Multilink - use one } \\ \begin{array}{c}\text { colour to model an } \\ \text { amount }\end{array} & \begin{array}{c}\text { colour to model an } \\ \text { amount }\end{array} & \begin{array}{c}\text { colour to model an } \\ \text { amount }\end{array} & \begin{array}{c}\text { colour to model an } \\ \text { amount }\end{array} & \begin{array}{c}\text { colour to model an } \\ \text { amount }\end{array} & \text { colour to model an } & \text { colour to model an } \\ \text { amount }\end{array}\right]$

Please see the National Curriculum for suggested year group objectives
(https://www.gov.uk/government/uploads/system/uploads/attachment data/file/335158/PRIMARY national curriculum - Mathematics 220714.pdf)

Maths Working Walls

All working walls will display the following:

Concrete	Use a real-life representation of the concept which children can see, touch and feel.	
Pictorial	Show a pictorial representation of the concept.	$12 \div 2=6$ $2 \times 6=12$ $12 \div 6=2$
Abstract	Show the mathematical representation of the concept.	$6 \times 2=12$ Vocabulary
Use vocabulary related to the concept	Multiply, times, repeated addition, array, divide, group, multiples, factors.	
Practise	Encourage children to practice the concept. Interactive opportunity - ask children to respond to questions, encourage them to add what they know, leave homework for children to take to master the	$1 \times 2=2$ $2 \times 2=4$ $3 \times 2=6$ etc.
Challenge be seen:	Set a challenge to be solved. Interactive opportunity - leave real-life objects or manipulatives for children to use to help solve the	How many different ways can 12 eggs be arranged into arrays?

Progression in the teaching of counting in the Foundation Stage

Pre-counting

The key focus in pre-counting is an understanding of the concepts more,
less and the same and an appreciation of how these are related. Children at this stage develop these concepts by comparison and no counting is involved.

Pre-counting ideas

Provide children with opportunities to sort groups of objects explicitly using the language of more and less.

Which group of apples has the most? Which group of apples has the least?

Ordering

Count by reciting the number names in order forwards and backwards from any starting point.

Ordering ideas

Provide children with opportunities to count orally on a daily basis. Rote count so that children are able to understand number order and can hear the rhythm and pattern. Use a drum or clap to keep the
beat.

One to one correspondence

One number word has to be matched to each and every object

Lack of coordination is a source of potential error - it helps if children move the objects as they count, use large rhythmic movements, or clap as they count.

One to one correspondence ideas

Play counting games together moving along a track, play games involving amounts such as knocking down skittles.

Use traditional counting songs throughout the day ensuring children have the visual/kinaesthetic resources eg. 5 little ducks, 10 green bottles

Cardinality (Knowing the final number counted is the total number of objects)

Count out a number of objects from a larger collection. Know the number they stop counting at will give the total number of objects.

Cardinal counting ideas

How many bananas are in my fruit bowl? Allow children to physically handle the fruit.

Provide children with objects to point to and move as they count and say the numbers.

Progression in the teaching of counting in the Foundation Stage

Subitising (recognise small numbers without counting them) Children need to recognise small amounts without counting them eg. dot patterns on dice, dots on tens frames, dominoes and playing cards as well as small groups of randomly arranged shapes stuck on cards.	Abstraction You can count anything - visible objects, hidden objects, imaginary objects, sounds etc. Children find it harder to count things they cannot move (because the objects are fixed), touch (they are at a distance), see, that move around. Children also find it difficult to count a mix of different objects, or similar objects of very different sizes.	Conservation of number - MASTERY! Ultimately children need to realise that when objects are rearranged the number of them stays the same.	End of year counting expectations count reliably to 20 count reliably up to 10 everyday objects estimate a number of objects then check by counting use ordinal numbers in context eg first, second, third count in twos, fives and tens Order numbers 1-20
Subitising ideas Provide children with opportunities to count by recognising amounts.	Abstraction ideas How many pigs are in this picture? Provide children with a variety of objects to count.	Conservation of number The amount is 'seven' and does not change.	Say 1 more/ 1 less than a given number to 20

Progression in the teaching of place value

Progression in the teaching of place value (continued)

Progression in the teaching of calculations \square						
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on. Regrouping to make 10.	Adding three single digits. Column method - no regrouping.	Column methodregrouping. (up to 3 digits)	Column methodregrouping. (up to 4 digits)	Column methodregrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column methodregrouping. (Decimalswith different amounts of decimal places)
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10	Counting back Find the difference Part whole model Make 10 Column method-no regrouping	Column method with regrouping. (up to 3 digits)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column method with regrouping. (Decimalswith different amounts of decimal places)
Multiplication	Doubling Counting in multiples Arrays (with support)	Doubling Counting in multiples Repeated addition Arrays- showing commutative multiplication	Counting in multiples Repeated addition Arrays- showing commutative multiplication Grid method	Column multiplication (2 and 3 digit multiplied by 1 digit)	Column multiplication (up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication (multi digit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping	Division as grouping Division within arrays	Division within arrays Division with a remainder Short division (2 digits by 1 digit- concrete and pictorial)	Division within arrays Division with a remainder Short division (up to 3 digits by 1 digitconcrete and pictorial)	Short division (up to 4 digits by a 1 digit number interpret remainders appropriately for the context)	Short division Long division (up to 4 digits by a 2 digit number- interpret remainders as whole numbers, fractions or round)

Progression in the teaching of calculations
Addition

| Objective and Strategies | Concrete |
| :--- | :--- | :--- | :--- |
| Combine two parts to make | |
| a whole model. | |

Use cubes to add two numbers together as a group or in a bar.			
Start at the larger number and count on Start with the larger number on the bead string then count on 1 by 1 to find the total	Use counters on a number track to count on.	Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$4+7=11$ Place the larger number in your head and count on the smaller number to find your answer.

Regrouping to make 10. Start with the bigger number and use the smaller number to make 10.	$6+5=11$	Use pictures or a number line. Regroup or partition the smaller number to make 10 . $9+5=14$	$7+4=11$
Adding three single digits. Encourage children to use known facts.	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10. $4+6+7=17$	

Progression in the teaching of calculations

Subtraction

| Objective and Strategies | Concrete | Pictorial | Abstract |
| :--- | :--- | :--- | :--- | :--- |
| Take away ones | Use real-life physical objects, counters, cubes etc.
 to show how objects can be taken away. | Cross out drawn objects to show what has been
 taken away. | $4=6-2$ |

Counting back

Find the difference \begin{tabular}{l}
Compare amounts and objects to find the difference.

Use cubes to build towers or make bars to find the

difference:

Count on using a number line from the smallest to

the greatest number.

Hannah has 23 pencils. Helen has

15 pencils. Find the difference in

the number of pencils.
\end{tabular}

| Part Part Whole | Link to addition- use the part part whole method to
 help explain the inverse.
 If 10 is the whole and 5 is one of the parts. What is the
 other part?
 $10-5=$ | Use pictures of objects to represent the part part
 whole method:
 $10-?=5$ | Move to using numbers with the
 part part whole method: |
| :--- | :--- | :--- | :--- | :--- | :--- |

Make ten	$14-5=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9.	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?
Column method without regrouping	$75-42=$ Use Dienes to make the minuend (usually the bigger number) then take the subtrahend (usually the smaller number) away. Show how you partition numbers to subtract. Again make the larger number first.	Draw the Dienes or place value counters alongside the written calculation to help to show working.	This will lead to a clear written column subtraction.

Progression in the teaching of calculations

Multiplication			
Objective and Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number. $5 \times 2=10$	Draw pictures to show how to double a number. Double 4 is 8 \square \square \square \square \square \square \square \square	Doubling by using known number facts and partitioning: Partition a number and then double each part before recombining it back together.
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count aloud in multiples of a number. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Repeated addition \begin{tabular}{l}
Use different objects to add equal groups:

$4+4+4$
There are 3
equal
groups,
with 4 in
each group.

\hline
\end{tabular}

Arrays- showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences. Use arrays to illustrate commutativity: 2 lots of 5 5 lots of 2	Rotate arrays to find commutative multiplication sentences: Link arrays to the area of a rectangle.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$

Partition to multiply (mental method)	Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4×15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. $\begin{array}{r} 4 \times 15 \\ 10 \\ 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{array}$

Progression in the teaching of calculations

Division

Objective and Strategies	Concrete	Pictorial	Abstract	
Division as sharing		I have 10 cubes, can you share them equally in 2 groups?		

Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $10 \div 2$ '10 divided into groups of 2' $35 \div 5$ ' 35 divided into groups of 5^{\prime} Cuisenaire rods on the number tracks can be used in a similar way - 'how many 5 s does it take to get to 35 ?'	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. 20 \square $20 \div 5=?$ $5 \times ?=20$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Division within arrays

Progression in the teaching of calculations
Fractions

Subtracting fractions	Use the same strategies as when adding fractions, ensuring that it is clear that you are starting with the minuend and removing/crossing out the subtrahend.		
Multiplication of fractions Note - sometimes easier to think of ' x ' as 'of' e.g. $1 / 2 \times 5=1 / 2$ of 5 Use different objects and shapes so that children don't just relate it to one particular shape.	Count in fraction steps (repeated addition) Use fractions of whole objects and shapes. Ask 'what would three lots of one eigth be?' On a strip of paper fold a $1 / 2$ of a $1 / 2$ $1 / 2 \times 1 / 2$ \square \square $3 / 4$	When both numbers are fractions, e.g. $1 / 4 \times 1 / 3$: Thinking of $1 / 4$ of $1 / 3$ gives rise to the image of quartering a picture like this: to give this Alternatively, $1 / 3$ of $1 / 4$ can be pictured as taking a third of a picture like this: to give this: These two images come together when you overlay two diagrams like this: (using overhead transparencies, for example).	$1 / 4 \times 3$ is most readily appreciated as $1 / 4$ taken three times, i.e. $1 / 4+1 / 4+1 / 4$ or $3 / 4$ (i.e. with 3 as the multiplier) However, it could also be thought of as $1 / 4$ of 3 (i.e. $1 / 4$ as the multiplier).

TENS FRAME IDEAS

LIFE SIZE TEN FRAME	Create a life-size ten frame in the classroom and outdoor play area. Use counters, pennies, teddies, gingerbread men, children etc.
FLASH	Flash ten frame briefly and have children write the number on a whiteboard. Using whiteboards, rather than having children say the number, ensures that all children attempt to respond and allows the teacher to assess class progress. When the response is oral, not all child responses are audible. Encourage children to share the different strategies used to find the total number of dots for cards, "How did you see it?" This can be varied by asking children to write the number and draw the pattern they saw, or by having them build the number flashed on their own blank frame.
FLASH: ONE MORE	Once children are familiar with the basic patterns, and know them automatically, flash a 10 frame or dot card and ask them to name the number that is one more than the number flashed. Variation: ask children to give the number that is two more/one less/double/ten more than the number flashed.
$\begin{aligned} & \text { I WISH I HAD } \\ & \text { TEN } \end{aligned}$	Flash a dot card or ten frame showing 9 or less and say, "I wish I had 10". Children respond with the part that is needed to make ten. The game can focus on a single whole, or the "wish I had" number can change each time. Variation: teacher flashes card and children write the complement of ten on individual whiteboards with dry erase markers.
I WISH I HAD 12	As above but children respond with how many more are needed to make twelve. Children should be confident in facts of 10 before this is attempted. For example to go from 8 to 12 , they should realise they need 2 more to get to 10 , then 2 more to 12.2 and 2 is 4 . Variation: Children draw an empty number line on their whiteboards to show the two jumps used to get to the target number.
1 MORE 1 LESS 10 MORE 10 LESS	The following four prompts are written on the board: one more one less ten more ten less The teacher flashes a dot or ten frame card as the 'starting number'. The first child selects one prompt. For example, if the teacher flashes a card showing ' 5 '
TEEN FRAME FLASH (11-20)	Teen Frame Flash (11-20) Once children are subitizing ten frame patterns $0-10$, cards showing larger numbers (i.e. more than one ten frame) should be introduced. Use mental math sessions with the following key questions: How many? How many more than 10? As children become familiar with the 'teen' patterns introduce further questions to develop number relationships. What is one more/two more than the number I flashed? What is one less/two less than the number I flashed? How far away is the number I flashed from twenty? Double the number I flash.
MULTIPLES	Flash a tens frame and ask children to give you the product if the number you flash was multiplied by 2,5 etc.

Concrete - Pictorial - Abstract

Concrete: Things you can pick up and move, for example dice, counters, shells, pebbles, straws.
Pictorial: A picture to represent mathematics, such as a calculation (printed in books or drawn).
Abstract: Numbers ($1,2,3,4$) and symbols ($+,-, x, \div,<,>,=$).

Part whole mode

If you know two values, you can always find the third.

Vocabulary
Find lots of different words to say the same thing, for example add, more, increase, plus.

Problem solving

Problem solving usually involves the bar model. Encourage children to answer questions using full sentences. The bar model is usually used when solving problems.

How you can help:

Ask your child what they know about a particular number
For example, here are some facts about 12:

- It is an even number.
- It comes after 11 and before 13.
- I can write it in numbers and words.
- I can make it using 1 ten and 2 ones.
- It is a 2 -digit number.
- It is 2 more than 10 and 3 fewer than 15.
- The sum of 7 and 5 is 12 .
- 5 fewer than 17 is 12 .
- It has 6 factors.
- It is half of 24 (a third of 36 , a quarter of 48 , a tenth of 120).
- It is double 6 .
- It is the product of: $3 \times 4,4 \times 3,2 \times 6,6 \times 2,1 \times 12,12 \times 1$.
- The sum of the digits in 12 is 3 .

Encourage your child to answer word problems using full sentences, and encourage them to draw pictures and models to answer questions.

Talk about maths with your child in everyday situations, such as a shopping trip or a trip to the park.

- Read the problem.
- Write a sentence for the answer, leaving a gap where the answer will go.
- Think about what is being asked and which model supports the question.
- Draw the bars.
- Partition or 'chunk' the bars and note which section represents the answer.
- Discuss the question and think about what is being asked.
- Write the answer in the sentence and check that the answer makes sense.
- Is there another way to draw the model and represent the question?
- What further questions could you ask using the model as a prompt?

